

A197725


Decimal expansion of Pi^2/(4 + Pi).


2



1, 3, 8, 1, 9, 8, 9, 2, 6, 7, 6, 3, 6, 0, 2, 2, 7, 4, 2, 1, 0, 4, 5, 5, 7, 8, 8, 5, 2, 2, 4, 6, 4, 9, 3, 4, 9, 0, 0, 0, 4, 1, 9, 6, 2, 6, 4, 2, 4, 3, 4, 8, 8, 5, 5, 9, 1, 1, 1, 4, 5, 1, 1, 9, 8, 0, 4, 4, 5, 5, 5, 5, 3, 9, 5, 0, 5, 9, 6, 6, 0, 7, 8, 8, 0, 6, 3, 2, 9, 9, 3, 5, 9, 4, 4, 1, 1, 7, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/2 and c=2/Pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.38198926763602274210455788522464934900041...


MATHEMATICA

b = 1/2; c = 2/Pi;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, 1.37, 1.39}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197725 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 2.8}]
RealDigits[Pi^2/(4+Pi), 10, 120][[1]] (* Harvey P. Dale, Jul 01 2013 *)


CROSSREFS

Cf. A197682.
Sequence in context: A094874 A132338 A132702 * A288875 A152230 A181371
Adjacent sequences: A197722 A197723 A197724 * A197726 A197727 A197728


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 17 2011


STATUS

approved



